

Spectroscopic Surveys Beyond DESI

David Schlegel, Berkeley Lab

RA,Dec = 243.1681, 8.4493 link here

Outline

- Redshift survey objectives: mapping linear modes
- DESI goals + technologies
- Beyond DESI
 - DESI-II: 200M galaxies at z < 2
 - FOBOS: Lyman-alpha at z > 2
- Investments to keep us "on the curve"

Redshift survey objectives: Map all the linear modes

Cosmological information content is in the linear regime

linear perturbations on scales > 10 Mpc at z=0

non-linear modes

Redshift survey objectives: Map all the linear modes

Cosmological information (dark energy, primordial Pk, neutrinos) contained the perturbative modes of the maps

II. LINEAR MODES

For a Gaussian random field with power spectrum P, in a periodic box where Fourier modes are well-defined, the error on a given power spectrum bin is given by

$$\sigma_P^2 = \frac{P^2}{N}$$
(1)

where N is the number of modes, counting the real imaginary parts at one k as 1. Therefore, we can define an effective number of linear modes for a survey to be given by the sum of signal-to-noise squared over band power estimates, i.e.,

$$N = \sum_{i} \left(\frac{P_i^{\text{signal}}}{\sigma_i} \right)^2, \tag{2}$$

We make the bands fine enough that this effectively becomes a numerical integral over k, μ , and z. The signal power is biased redshift-space linear power $(b+f\mu^2)^2P_L$ suppressed by the anisotropic information damping factors introduced

Font-Ribera, McDonald, Slosar in prep.

How many modes are there?

- ~2 billion linear modes from 0 < z < 4 (over 20,000 sq deg)
- 1.9 million modes to be measured by DESI
- 2.1 million modes to be measured by LSST

z

How many modes are there?

- ~2 billion linear modes from 0 < z < 4 (over 20,000 sq deg)
- 1.9 million modes to be measured by DESI
- 2.1 million modes to be measured by LSST

How many galaxies to measure these modes?

10 million galaxies 0 < z < 0.4 120 million galaxies 0 < z < 1.5 2 billion galaxies 0 < z < 4

Redshift surveys necessary to map all modes

Redshift surveys $\Delta cz \sim 300$ km/s at z=0, preserves information down to non-linear regime (e.g., small scales)

Redshift surveys necessary to map all modes

Photometric surveys $\Delta cz \sim 10,000$ km/s at z=0, washes out many of the linear modes; not recoverable even w/numbers

Low-resolution / photo-z redshifts pay a penalty

Spatial resolution helps to 1"

Spectral R > 3000 greatly reduces sky level by removing sky lines

(relevant for ground-based instruments)

Spectral R > 3000 improves redshift s/n

Redshift surveys are necessary to map all modes

There are more objects of interest on a spectroscopic focal plane than on an imaging focal plane ~10,000 / deg² for imaging → information has saturated ~100,000 / deg² for spectroscopy

HST Ultra-Deep Field 10,000 galaxies / (11 arcmin²)

DESI Goals + Technologies

4 meter primary
1 meter diam corrector
5000 fiber-robot army
200,000 meters fiber optics
10 spectrographs x 3 cameras

DESI Goals

35 million galaxy + QSO redshift survey

How many galaxies to measure these modes?

10 million galaxies 0 < z < 0.4 120 million galaxies 0 < z < 1.5

-> DESI will map ~100% of these

-> DESI will map ~10% of these

DESI Technologies

6-lens optical corrector, 1-m diameter, includes ADC

DESI Technologies

The robot army of DESI replaces hand-plugging of fibers

DESI Technologies

10 spectrographs X 3 cameras/spectrograph

DESI Technologies

Forward-modeling of spectro data offers substantial improvements over the old-school, 20th-century, data reduction of SDSS-I SDSS-I operated at S/N ~ huge SDSS-III/BOSS operated at S/N ~ 50 DESI will operate at S/N ~ 10

Model fiber PSF for SDSS1 @ 8500Å

The future of redshift surveys?

Modest improvements in capability from SDSS-I → SDSS-III/BOSS → DESI

How has <u>capability</u> improved?

- CCDs → improved, esp. in the red/infrared
- CCD electronics → lower noise
- Stability of calibration systems
 - allowing better sky-subtraction, fainter objects

Bigger gains have been in multiplexing

- Optical designs for wider fields on telescope & in spectrographs
- More fibers, hand-plugged → massively-parallel robots

Technical challenges are cost effectiveness

Pre-SDSS → SDSS revolution

Multiplexing from 1-30 objects → 640 objects

using fiber-fed spectrographs

In 2015, SDSS has collected more galaxy redshifts (2.7M)

than all other telescopes on earth combined

Cost models for multi-objects spectrographs scaling from DESI

Cost for 1% improvement

Telescope + corrector (\$40M + \$10M) * (Mirror area / 4-m) ²	+\$200k + \$50k
Focal plane + spectrographs \$1000 X N _{fiber} + \$1M X (N _{fiber} /500)	+\$150k
Operations \$6M/year X 5 years	+\$300k

DESI cost model is reasonably well-balanced

Most improvement would come from more fibers,

but not possible on DESI given other design constraints

Future investments to keep us "on the curve"?

Future investments to keep us "on the curve"?

Fiber robot costs

- → Pick-and-play fiber positioners (2dF, MMT, ...) do not scale
- → Fiber robots w/ 1 robot per fiber scales ~\$10,000 / fiber for Subaru/FMOS in ~2006 ~\$2000 / fiber for Subaru/PFS in ~2013 ~\$700 / fiber for DESI in ~2015

Future investments?

- → DOE started R&D in 2006 with LBNL LDRD support, followed by DESI development
- → Continued R&D would further reduce per-robot costs

Two possible near-term redshift survey concepts

DESI-II + LSST for z<2

Option 1: DESI @ Kitt Peak, LSST @ Cerro Pachon 10,000 sq deg footprint equatorial

Option 2: DESI @ Cerro Tololo

14,000 sq deg footprint equatorial + south

DESI-II + LSST for z<2

DESI-II + LSST for z<2

- 1. Retain DESI @ Kitt Peak with 10,000 sq deg overlap, or move DESI instrument from Kitt Peak -> CTIO
 - Optics study from Tim Miller (16 Sep 2014) shows no changes needed to the optics (in fact, it's better there!)
- 2. Re-furbish instrument with faster electronics
 - Probably necessary for shorter exposures
- 3. Target ~200,000,000 galaxies with the best photo-z's
 - LSST will have a parent sample of ~10 billion galaxies
- 4. Turn photo-z's → spectroscopic redshifts
 - $\Delta z \sim 0.03 \rightarrow \Delta z \sim 0.001$

The trick:
DESI operates at S/N > 7
DESI-II at S/N > 3

Bolton, Schlegel et al. 2012

FOBOS @Keck for z>2

FOBOS @Keck for z>2

- 1. Utilize Cass or Nasmyth focus at either Keck telescope
- 2. 1000-fiber robotic focal plane, using DESI technology
- 3. DESI spectrographs

4. High-density Lyman-alpha forest mapping at z > 2

Longer-term redshift survey concept

What's possible with current tech?

- 1. Optical design from LAMOST/Guoshoujing telescope
 - ~2X aperture of DESI
- 2. DESI fiber positioners
 - 5X fiber positioners (25,000)
- 3. Survey speed increase 10X for galaxies at z < 2, 5X for Lyman-alpha forest at z > 2

Summary

Linear modes for cosmology

— DESI will map ~100% of modes at z < 0.4</p>

~10% of modes at z < 1.5

 $^{\sim}2\%$ of modes at z < 4

- DESI-II + LSST could map 100% of modes at z < 1.5</p>
- —"Beyond DESI" need only map ~2 billion galaxies at z < 4

If the photons are valuable...

Spectroscopy is cost-effective use of those photons

For this Cosmic Visions Process...

DESI-II + LSST redshifting should be demonstrated/simulated